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Class Probability and Generalized Bell Fuzzy
Twin SVM for Imbalanced Data
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Abstract—The data mining community has a major challenge
in classifying datasets with noise, outliers, and imbalanced classes.
Twin support vector machine (TSVM) is a well-known plane-based
learning technique for classification, however, it has poor perfor-
mance on the aforementioned datasets. To address the issue, in
this article, we propose a novel class probability and generalized
bell fuzzy twin SVM for imbalanced data (CGFTSVM-ID). The
proposed CGFTSVM-ID assigns membership value to the data
points using a new membership function called class probability
and generalized bell (CPGB) function. The membership function
for the majority class is a combination of the generalized bell (gbell)
function, class probability, and imbalance ratio. The gbell function
suppresses the negative impact of outliers in the training data by
assigning them less value. The less class probability of the majority
class data points denotes their higher possibility to be noise. The
imbalance ratio of the classes considered in the membership func-
tion tackles the imbalancing issue of the datasets. In order to ensure
the importance of the minority class samples in model learning, rel-
atively high memberships are assigned to them. Thus, the proposed
CPGB function handles the class imbalance learning problem with
noise and outliers. We employ successive overrelaxation technique
to solve the proposed optimization problem. The extensive numeri-
cal experiments and statistical analysis carried out over imbalanced
real-world UCI and KEEL datasets clearly reveal that the pro-
posed CGFTSVM-ID has superior generalization performance in
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comparison to baseline models. Moreover, the experiments are also
conducted on the publicly available ADNI dataset for Alzheimer’s
disease classification and the results demonstrate the superiority of
the proposed CGFTSVM-ID.

Index Terms—Alzheimer’s disease (AD), generalized bell (gbell)
function, intuitionistic fuzzy theory, twin support vector machine
(TSYM).

1. INTRODUCTION

UPPORT vector machine (SVM) [1] is one of the rapidly
S expanding techniques of machine learning. It has wide
applications in various domains such as tea identification [2],
dendritic spine detection [3], EEG signal classification [4], and
so on. Over many other classification paradigms, SVM has a
strong mathematical background and leads to a unique optimal
solution. The objective is to find the optimal hyperplane with a
maximal margin between the two classes. The maximum margin
can ensure a reduced Vapnik—Chervonenkis (VC) dimension,
thus improving the generalization performance. However, SVM
suffers from high time complexity [5].

Apart from SVM, various classifiers, such as generalized
eigenvalue proximal SVM (GEPSVM) [6] and twin support
vector machine (TSVM) [7], have been proposed that draw two
nonparallel hyperplanes. TSVM solves two smaller quadratic
programming problems (QPPs) as compared to SVM, which
solves a large QPP. TSVM creates hyperplanes in such a way
that each hyperplane is proximal to one of the classes and lies at
a distance of at least one unit from the other class. TSVM is four
times more efficient than SVM [7]. Unlike SVM, TSVM consid-
ers only empirical risk minimization [8] and does not consider
structural risk minimization (SRM), which is addressed in twin
bounded SVM (TBSVM) [9]. Various variants of TSVM have
been presented in the last decade, which are briefly discussed in
a comprehensive review of TSVM [10].

Learning from an imbalanced dataset and addressing the
noise and outliers present in the training dataset are the two
primary challenges related to classification problems. For the
datasets having two classes, imbalanced datasets have one class
in abundance (majority class) as compared to the other class
(minority class). There are several real-world domains, such as
face recognition [11], where an imbalanced dataset can be seen.
In general, there are two techniques to deal with class imbalance
learning (CIL) problems: data-level approach and algorithm-
level approach. Data-level approaches involve preprocess-
ing techniques to get balanced data such as undersampling
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(neighborhood cleaning rule [12]) and oversampling (synthetic
minority oversampling technique [13]). However, data-level
approaches may discard valuable information (undersampling)
or introduce noise (oversampling) [14]. The algorithmic-level
approach modifies the algorithm. The TSVM algorithm per-
forms well on a balanced dataset, however, when dealing with
imbalanced datasets, TSVM considers all samples equal and
overlooks the distinction between minority and majority classes,
which might lead to the obtained classification boundary being
biased in favor of the majority class [15]. Furthermore, TSVM
provides equal attention to all the training samples, including
potential outliers or class noise that can significantly skew the
decision hyperplane [7].

To ensure good performance of a model for imbalance learn-
ing with noise and outliers, various SVM variants have been
proposed where the contribution of input data depends on mem-
bership functions, which lessen the influence of outliers and
noise on classification technique. Fuzzy SVM (FSVM) [16] is
proposed to handle outliers and noise, where the assignment
of fuzzy value depends on the distance from the class center.
The assignment of membership to the input data is the key
point in FSVM variants. Though fuzzy concept overcomes the
effect of noise/outliers, it still suffers from CIL issue. To handle
the class imbalance problem in the presence of outliers and
noise, Batuwita and Palade [17] proposed FSVM for imbalance
data (FSVM-CIL) with four different membership functions.
In FSVM-CIL, the hyperplane-based membership function as-
sumes the initially obtained hyperplane is an accurate prediction
of the final hyperplane, which is not always the case. To over-
come the limitations of the aforementioned model for CIL in
the presence of noise/outliers effectively, Tao et al. [18] intro-
duced affinity and class probability-based FSVM (ACFSVM)
designed for imbalanced datasets, which uses support vector
data description (SVDD) [19] and class probability to obtain the
membership value of the data points. An alternative approach
to tackle the challenge posed by outliers and noise in the data
involves employing the large-scale pinball TSVM [20].

Similar to SVM, many twin variants have been proposed to
overcome the impact of outliers and noise. Rezvani et al. [15]
introduced intuitionistic fuzzy TSVM (IFTWSVM) by incor-
porating the intuitionistic fuzzy number (IFN) in the TSVM
model. It assigns membership and nonmembership values to
each sample, which is used to calculate the score values of
the data points. Thus, IFTWSVM has diminished the effect of
noise/outliers on classification problems. However, [IFTWSVM
encounters computational challenges for large datasets due
to the computation of matrix inverses, making it intractable
in such scenarios. Improved IFTWSVM (IIFTWSVM) [21]
overcomes the requirement of matrix inversion and has resis-
tance against noise and outliers. To deal with the CIL prob-
lem along with noise/outliers, IFTWSVM for imbalanced data
(IFTWSVM-ID) [22] is proposed, where a weighting strategy
is given to the data points to tackle the class imbalance issue.
Further, to enhance the time complexity of IFTWSVM along
with considering the local neighborhood information, Tanveer
et al. [23] introduced intuitionistic fuzzy weighted least square
TSVM. A large-scale fuzzy least square TSVM [24] is proposed
to classify large-scale data. K-nearest neighborhood (KNN)
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weighted reduced universum twin SVM for CIL is introduced
by Ganaie et al. [25], which used the available prior and local
neighborhood information of the data in training of the model.
Another method to address the effect of noise in the data is
presented by Tian et al. [26] by building a semisupervised
model. Later, the branch and bound method is updated in [27]
and another effective model is constructed. Another variant that
modified the concept of intuitionistic fuzzy in a better way is
introduced by Zhang et al. [28]. Further, the idea of affinity and
class probability is extended to twin variants, and fuzzy TSVM
based on affinity and class probability (ACFTSVM) for CIL [29]
is introduced.

To deal with the major concerns of noise, outliers and CIL is-
sues, in this article, we propose a novel class probability and gen-
eralized bell fuzzy twin SVM for imbalanced data (CGFTSVM-
ID). It assigns varying membership values to the training data
points, determining their impact on the creation of nonparallel
hyperplanes. In the proposed method, the generalized bell (gbell)
function assigns the membership value to the majority class data
points based on their location and reduces the effect of outliers
in the classification process by assigning them a lesser value.
To further reduce the noise impact, the class probability of the
majority samples is calculated. By combining the gbell values,
class probability of the majority samples, and the imbalance ratio
of the datasets, we define a class probability and generalized bell
(CPGB) membership function. The contribution of the proposed
CGFTSVM-ID can be summarized as follows.

1) We present a new membership function called (CPGB
to solve imbalance learning problems having noise and
outliers, which assign weights to individual samples to
decide their influence in the construction of the final
optimal plane.

2) The proposed CGFTSVM-ID employs regularization term
to follow the SRM principle, which avoids the overfitting
problem.

3) The optimization problem of the proposed CGFTSVM-
ID is solved using the successive overrelaxation (SOR)
technique, which processes datasets effectively without
residing in memory.

4) The extensive numerical experiments conducted over real-
world UCI and KEEL datasets consistently show that the
proposed CGFTSVM-ID outperforms the baseline mod-
els in terms of classification performance. The proposed
model’s effectiveness is further demonstrated on the ADNI
dataset, demonstrating its real-world application in clas-
sifying Alzheimer’s disease (AD).

The rest of this article is organized as follows. Section II
discusses the related work. Section III provides a detailed ex-
planation of the proposed work, while Section IV encompasses
numerical experiments and the subsequent statistical tests.
Section V contains the application of the proposed work. Finally,
Section VI concludes this article.

II. RELATED WORK

In this section, we discuss state-of-the-art algorithmic-level
approaches to reduce the impact of noise and outliers in the data
along with imbalanced learning techniques. Assume the set of
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training samples denoted as {(z1,y1), (z2,Y2), -, (Tn,Yn)}
where z;, € R™ represents the feature vector and vy, € {£1}.
Let T} and T, be the matrix containing positive and negative
samples, respectively, of order ¢; x m and t5 x m. Presume the
positive class constitutes the majority class, while the negative
class serves as the minority class, and the imbalance ratio (ir)
is expressed as the ratio between the cardinality of the majority
class and the minority class. We represent the sample x, belong-
ing to the majority class as 2, and if it belongs to the minority
class, denote it as 2", Additionally, let  represent the mapping
from the feature space to a higher dimensional space.

A. Intuitionistic Fuzzy Scheme

The intuitionistic fuzzy [15] approach involves assigning an
IFN to each training sample in the dataset based on their mem-
bership and nonmembership functions, respectively. To assess
the presence of noise or outliers in the dataset, a score function
is established utilizing the membership and nonmembership
functions.

1) Membership Function: It is defined in terms of the dis-
tance between the class center and the training data points in the
high-dimensional feature space. Mathematically,

10(zr)-Call _
. {1 ;i_;,_gl ) lfyk_la
L 0(xy)—-C .
1 Il (;l;l 2”7 1fyk: — 1’

(D

where A is a small positive number. C; = % > yp=10(zy) and
Cy = % yu=—1 0(x) are the centers of positive and negative
classes, respectively. And, Ry = max,, —1 ||6(z;) — Ci|| and
Ry = max,, —_1 ||6(x;) — C2|| denote the radius of positive and
negative classes, respectively.

2) Nonmembership Function: It depends on the proportion
of dissimilar points to the total number of points in a neighbor-
hood around each sample. It is defined as:

v = (1 — pr)¢ (), 2
where

|20 2 10(zx) — Ozl < B,y # il
22 [|0(xk) — O(x) | < B]

Here, 3 corresponds to user-defined positive parameter.

Score function: The pair (u, vy) for each training sample
(z) is called IFN and is used to calculate score value of data
points by the function given as:

C(zy) =

12278 if V = 0
sk=140, if pg < v (3)
2};};’}% , otherwise.

B. Intuitionistic Fuzzy TSVM

By incorporating the concept of IFN into the classical
TSVM, Rezvani et al. [15] proposed the IFTWSVM, which is
effective against noise and outliers. The kernel-generated sur-
faces for the nonlinear case are given by:

K(z, T"w;, + by =0, and K (z, T")wy + by = 0
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where K (., .) represents the kernel function; wy, wo are weight

1 .
. The nonlinear
2

optimization problems corresponding to IFTWSVM are given
as:

vectors; by by are bias terms and T =

1 1
min §|\K(T1,Tt)w1 +eibi | + §)~1||w1||2 + hasyXe

wi,b1,X2
s.t. — (K(TQ,Tt)wl + 62b1) —+ X2 Z €2, X2 2 0 (4)
and
.1 1
min 7|‘K(T2,Tt)w2 + €2b2||2 -+ *)\,3”11)2”2 -+ )\4St1X1
wz,bQ,X12 2
s.t. (K(Ty, T"Yws + e1bs) + x1 > €1, x1 > 0 5

where A1, A2, A3, and A4 denote the positive hyperparameters.
1 and yo correspond to the slack variables. s; and s9 are score
vectors calculated using (3) for positive and negative class data
points, respectively. e; and e, are the column vectors of ones
with appropriate dimensions.

C. Affinity and Class Probability Based Fuzzy Support Vector
Machine for Imbalanced Datasets

To overcome the limitation of SVM in the presence of
noise/outliers and CIL issue, Tao et al. [18] proposed ACFSVM,
where they assigned membership values to the data points. Using
the concept of SVDD [19], the affinity of the majority class is
calculated, which identifies border samples (outliers) existing
among the majority samples effectively. The KNN is employed
to calculate the probability of data points in the majority class.
Here, R denotes the center and radius of the training data points
and d5'% denotes the distance of each training data point (z)
from the class center. The function to calculate affinity is written
as:

dskwdd 7min(d‘§:‘"‘ )

08<m(dkdd)m(dkdd)) if 4y < px R,

svdd
d k

o2 (exp(31 - E53)) ). it = px R
(6)

Harf(Tr) =

where min(d?dd) and max(dﬁc"dd) denote the minimum and max-
imum distance of the data points from the class center, p € (0, 1]
controls the size of outliers and the border samples and (3 is a
positive weight decay parameter.

Using the concept of KNN, a probability value (p(zy)) is
assigned to each data point, which is calculated as the ratio
between the same class data points among the k selected nearest
neighborhood data points in the kernel space and k. Hence,
ACFSVM calculates the final membership values as follows:

min

1, if xp, = ™",

= ' ;
N(:I,‘k) {ﬂaﬁ“(ﬂ?k) X p(gjk)’ if z, = xr]:la]' @)
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Data points

Class center

(a) (b)

Fig. 1. Representation of a training sample. (a) Sample having majority of the
data points lying on the boundary of class. (b) Sample having majority of the
data points lying around the center of the class.

Distance—>|

Fig. 2. Graphical illustration of membership function in (1).

D. Limitation of the Existing Membership Functions

Though the score function defined using the concept of IFN
in (3) has resistance against noise and outliers, it has certain
limitations, such as follows:

1) Assume the data has a distribution characterized by a
significant concentration of the training data points along
the boundary of the class as depicted in Fig. 1(a). Then,
the majority of data points are assigned a membership
that is close to zero according to (1), as visually depicted
in Fig. 2. Consequently, their impact on the classification
process is minimized.

2) The membership function of IFN decreases linearly
with distance, i.e., the membership value decreases as
the distance between data points and the corresponding
class center increases. Though the points lying near its
class center belong to the dense region of its class dis-
tribution [e.g., data point A in Fig. 1(b)], these are given
a lower membership value compared to the class center
(C). Consequently, their significance in the classification
process is reduced.

The membership function discussed in ACFSVM in (7) is an
effective way to deal with noise, outliers, and imbalanced data
simultaneously, however, it has the following limitation.

1) The computation of affinity in (6) involves solving QPP
associated with the SVDD technique, which has high
complexity. Furthermore, the determination of class prob-
ability entails selecting the k nearest neighbors for each
training data point, a factor that significantly contributes
to the overall increase in time complexity.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 32, NO. 5, MAY 2024

Slope= > r
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[« Distance —>

h‘ Jhghell —p

Fig. 3.  Graphical representation of gbell membership function of (8).

III. PROPOSED WORK

In the preceding section, we discussed the limitations of the
two well-known weighting assignment techniques for noise and
outliers. To address these limitations and draw inspiration from
the aforementioned existing weighting techniques, we propose
the CPGB membership function. By amalgamating the CPGB
membership function with TSVM, we present a novel frame-
work called CGFTSVM-ID.

A. Weight Assignment to the Training Data Points

In this, section, we discuss the strategy of assigning weights
to the training data points.

1) Determination of Membership Value: The gbell function
is a well-known fuzzy set membership function, frequently
employed in fuzzy logic and fuzzy systems. It enables more
adaptable and versatile fuzzy modeling and is an extension
of the bell-shaped membership function [30]. In the proposed
CGFTSVM-ID, it assigns membership value to the data points
depending on their location in higher dimensional space. The
assigned membership value is used to identify the outliers and
border samples present in the majority class. Formally, the gbell
function [30] is expressed as follows:

1 .
T T———— T if Yk =
1_,'_(\\9(%2*01\\) o

®)

Mgbell(l‘k) = : ’ )
L (el ) if yr = —1.

Here, C7 and C5 correspond to the center of the positive class and
negative class, respectively, defined as Cy = % > ye=1 0(xk)
and Cy = -3 _ | 0(xx). a and r correspond to member-
ship function positive parameters responsible for the width and
steepness of the function (8), respectively. The gbell function is
illustrated in Fig. 3.

2) Determination of Class Probability: The impact of noise
during model training is mitigated by the class probability value
assigned to the training data points. This value, computed for
each sample, is determined by the ratio of the number of samples
belonging to the same class within a predefined neighborhood
to the total number of data points in that neighborhood:

_ Hey  110(z;) = 0Cen)| < 6,95 = yr}|
|z 2 [10(25) = O(z)l < 0 ’

p(zk) )
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where 0 is a fixed positive real number. The greater value of
p(z)) implies the larger belongingness of xj, to its own class.
Thus, less probability value of noise leads to a reduced effect on
the construction of hyperplanes. In (9), we have

(16(z) — 6(2))* = K (2,2) — 2K (2, %) + K (Z, 7).

3) Proposed CPGB Membership Function: Combining the
calculated gbell function values of each sample using (8) with
the probability value calculated using (9) and the imbalance ratio
(ir) of classes, we define CPGB membership function as follows:

1 if 2 = 20
pg(xr) = ; myj  (10)
! {Hgbeu(ﬂ:k) X plog) x &, iz, =2

Theorem 1: For all the positive (negative) data points and
the gbell function parameters C; (C3), a > 0 and r > 0, the
proposed CPGB membership function lies between 0 and 1. In
other words, 0 < pg(zr) <1, k=1,2,...,n.

Proof: For the minority (negative) class sample, the proof
holds. For majority class samples,

10(zr) — Ci|| > 0 VY € majority (positive) class

0 _ 2r
N (M) >0 Y. a>0andr>0.

1
2r S L.
1+<H9(wki—01\\)

éH(He(zk)—clu)” 1o

a

1
5 >0
1+ (HG(GCI«)*ClH)

a

Also,

Hence, V x;, € majority class, 0 < jigpen(zx) < 1. Also, 0 <
p(zr) <1 and 0 < % < 1. Thus, the value of the proposed
CPGB membership function lies between 0 and 1. |

The proposed CPGB function effectively overcomes the lim-

itations discussed in Section II-D in the following way.

1) Unlike IFN, where membership value decreases linearly
from the center, the proposed CPGB function assigns
membership value depending on the parameter ‘a’ of (8)
that decides the width up to which the training data points
should be assigned a high membership value so that the
classification performance improves. Thus, for the data
distribution having majority samples at the boundary of
the class, membership value varies with that of ‘a’ leading
to an optimal classifier.

2) Itcanbe clearly seen from Fig. 3 that, up to the distance ‘a’
from the class center, the assigned membership value is
high depending on the steepness parameter ‘r’ of the gbell
function. Thus, the membership value of all the training
points lying in the dense region of the class distribution
varies depending on ‘r’ and may take an equivalent value
to that of the class center. Hence, leading to an improved
contribution of such points in the classification process.

3) The proposed CPGB function does not require the solution
of the other QPP of SVDD. Also, we are considering the
class probability of the training data points in some fixed
radii () instead of KNN. Hence, the calculation of the
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proposed weighting technique has better efficiency with
respect to (wrt) time than the membership function of
ACFSVM.

B. Proposed CGFTSVM-ID: Linear Case

By integrating the above proposed CPGB membership func-
tion (10) with the TSVM model, we propose anovel CGFTSVM-
ID. The equations of nonparallel hyperplanes for positive and
negative classes are given as:

whiz 4+ b =0 and whr +by =0 (11)
respectively. The optimization problems for the proposed
CGFTSVM-ID are expressed as:

. 1 1
min §\|T1w1 +erby|® + sar(lwe]? + b7) + Aopl, x2

wi,b1,X2 2
st. — (Thwy +eaby) + x2 > €2,x2 >0 (12)
and
. 1 1
min  =||(Tows + €2b2)[1” + SAs(|[wa]|® + b3) + Aaply, xa
wa,ba,x1 2 2

s.t. (Tywa + e1ba) + x1 > e1,x1 > 0, (13)

where X, Ao, A3, and X4 are the positive hyperparameters,
and ey, ey are the column vectors. 15, € R"* and p,, € R'2
are the membership values of positive and negative classes;
x1 and Yo are the slack variables. The first term in QPP (12)
minimizes the distance of the positive class data points from
the positive class hyperplane, and the second term corresponds
to the regularization term, which considers the SRM principle.
The third term minimizes the total penalty imposed on negative
class data points, which are at a distance less than 1 from the
positive class hyperplane. A similar explanation follows for
the QPP (13). The Lagrangian corresponding to QPP (12) having
a1 and By as the positive Lagrange multipliers, is written as:

1 1
ZL(wy, b1, x2, 01, 1) = §||T1w1 + elb1||2+§)\1(||w1||2 +b7)
+ haphoxe + o (e2 — x2 + (Towr + eabr)) — Bixz. (14)

From the Karush Kuhn Tucker (K.K.T.) conditions, differentiate
the Lagrangian (14) wrt w1, b1, and 2, we obtain:

0L
—— = T{(Tywy + e1by) + rMwy + Thay =0, (15)
8’(1)1
0%
ﬁ = eﬁ(lel + 61[)1) + )»1[)1 + eéal = 07 (16)
1
0%
sz = Aafig, — Q1 — B1=0. )
Combining (15) and (16), we get
Tt Tt
( o e]+ MI) Y12 =0 ()
61 bl 62
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Assuming P = {Tl 61} , Q= |:T2 egjl, (18) reduces to

19)

tﬂ = —(P'P+aI)"'Q .
1

Similarly, for the QPP (13) having o and (35 as the positive
Lagrange multipliers, we get the relation:

(20)

lw2‘| _ (QtQ +)»3[)_1Pt0é2.
ba

The Wolfe dual for the primal problems (12) and (13) can be
expressed as:

1
min iaﬁQ(PtP + 1D 'Qtay — ebay
o

S0 < o < Aafty, @1)
and
m1n la2 P(Q'Q + a3I) ' Plag — el oy
s.t. 0 < an < Agpg,, (22)

respectively. A new data point x is allocated to a class based on
the function:

[[ws ]| [[wa |
C. Proposed CGFTSVM-ID: Nonlinear Case

For the nonlinear case, the kernel-generated nonparallel sur-

faces are given by the following equations:
K(z,TYwy +b; =0, K(z,TYws+by=0,  (24)

where K (., .) represents the kernel function. The nonlinear opti-
mization problems corresponding to the proposed CGFTSVM-
ID are defined as:

.1 1
min iHK(TlaTt)wl =+ 61b1||2 + 5)\.1(“11)1H2 —+ b%)

wy,b1,x2
+ hatig, X2
st. — (K (Ty, T")wy + eaby) +x2 > €2, x2 >0 (25)
and

min
wa,b2,X1

1 1
§\|K(T2»Tt)w2 + eabs|” + §l3(\|w2||2 +b3)

+ haph X1
st (K(Ty, T ws + e1ba) + x1 > e1,x1 >0,  (26)

where the terms have the same notion as discussed in the linear
case. Solving as the linear case by using K.K.T. conditions, we
obtain the dual for primal problems (25) and (26) as:

1
min iaﬁQ(PtP + )q[)letoq — eéoq

s.t.0< g < Aoptg, 27
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and
mln a2 P(Q'Q + A3I) ' Plag — el

(28)
(K (T2, T")

s.t.0<ag < )L4,ugl

respectively, where P = [K(T},T!) e1], Q=
62].
A new data point (x) is labeled as positive or negative de-

pending on the function:

VWK (T, Tw, ~ /whK (T, T%)w,
(29)

flz) = argmi“{ Ko T bl| Kz, T Jup + by }

D. Time Complexity

Consider a binary class classification scenario with a total of
n samples, where ¢; samples represent the positive class and
to samples represent the negative class. Assuming the positive
class as the majority class, the imbalance ratio (ir)= % The
time complexity of the proposed CGFTSVM-ID is determined
by two primary components. First, it involves calculating the
CPGB membership value for the data points, which comprises
the calculation of the gbell function value [see (8)] and the class
probability [see (9)] for the majority class samples. The com-
plexity of calculating gbell value would be O (¢1), as it entails a
fixed number of arithmetic operations. Similarly, the complexity
for calculating the class probability is equal to O(ty) [15].
Second, the computational complexity of SVM is O(n?), which
implies the complexity of TSVM is O(t3)+O(#3) [7], where
n =1ty + to. Therefore, solving the obtained QPPs involves
a computational complexity of (ir® + 1) O(#3). Consequently,
the overall time complexity of the proposed CGFTSVM-ID is
(ir® + 1)O(t3) + O(t1) + O(ty).

IV. NUMERICAL EXPERIMENTS

In this section, we delve into the numerical experiments and
present the corresponding results for the proposed CGFTSVM-
ID along with state-of-the-art baseline models, which are
TSVM [7], IFTWSVM [15], IFTWSVM-ID [22], intuition-
istic fuzzy TSVMs with the insensitive pinball loss (pin-
IFTWSVM) [31], IIFTWSVM [21], ACESVM [18], and
ACFTSVM [29].

A. Experimental Setup

All the experiments are carried out in MATLAB 2022b on
a desktop PC with 11th Gen Intel(R) Core(TM) i7-11700 @
2.50 GHz processor and 16 GB RAM. 70% of each dataset is
used for training and remaining dataset is used for testing. For the
selection of the optimal parameters, we used grid search with 10-
fold cross-validation. For brevity and increased computational
efficiency, we assumed A = A3 and A5 = A4. All the datasets
are normalized using the Z-score normalization technique. To
implement the nonlinear case, we used the Gaussian kernel
(exp(||z; — x> /20?)). The optimization problems of the pro-
posed CGFTSVM-ID are solved using the SOR technique. The
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Algorithm 1: Algorithm CGFTSVM-ID.

Input: Training data point (x1,v1), (2,¥Y2),- -+, (Tn,Yn),
testing data, hyperparameters A1, Ao, Az, Ag,
membership function parameters a and r.

Output: Labels of testing dataset.

1) Determine the gbell membership value of training
data points using

1 .
TPy~ T if Yk = 1
= " ’

frgbeu (Tr) = | L
1+(H9<zk>—c2u)2“ if g = —1.
2) Obtain class probability of training data using
xi:|0(x;)—0(x)||<,y,=
plan) = PG
3) Calculate the CPGB membership value of the
training data points following

min

1, if 7, = ™",

faven (z) X pag) x L, ifay, = a2,

4) Integrating the assigned membership value, obtain
a1, ae by solving the optimization problems (21)
and (22) for the linear case, and (27), (28) for the
nonlinear case.

Mg('rk) =

5) Obtain = —(P'P+xI)"1Q'a; and
1
/L:2 = (QtQ —+ Ag[)ilptaz.
2

6) Determine labels of test data point using

. toe+b to+b .
flx) = argmm{ lwrztby| Jwpzt 2'} for linear case

f[wn] [[w2]

and
f(z) = argmin{ KT Jwitby] - |K (2,1 )watbsl }

VwiK(T,THw,’ \/wh K(T,T)w,
for the nonlinear case.

relaxation factor (w) in the SOR method is typically constrained
to the interval (0, 2) [32]. A larger w accelerates convergence,
but it can introduce instability. On the contrary, a smaller w
results in slower convergence. To strike a balance and achieve
optimal convergence with stable results, we empirically selected
w as 0.5. For better comparison, we solved the optimization
problems of the compared twin variants using SOR, except
for ACFSVM, which is solved using the MATLAB quadprog
toolbox. Different parameters of the optimization problems vary
in the following way: A; and A in the twin variant models (and A
in ACFSVM) are chosen from range {107°, ..., 10°}; the Gaus-
sian kernel parameter o is chosen from the range {27°,...,2°}.
The values of € and 7 for pin-IFTWSVM are taken the same
as in [31]. The parameters of ACFSVM except for A and o
are taken the same as in [18]. The gbell membership function
parameter ‘a’ takes the range [1/2,5/8,3/4,7/8, 1]x(radius of
positive/negative class). We considered the proposed CPGB
membership function steepness parameter ‘r’ same as the value
of ‘a.” We considered ¢§ as the maximum radius encompassing
positive and negative classes, ensuring a broader neighborhood
coverage. The class probability, influenced by this neighborhood
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information, extends across a wide area around each data point.
Moreover, choosing § as the maximum radii of the positive and
negative classes dynamically adapts § according to the spread or
variance of the data. This can help the model adjust to the scale of
the dataset, potentially improving generalization performance.
The performance indicators for the experiments are area under
ROC (AUC), sensitivity (Sens.) specificity (spec.), G-mean, and
F-measure, which are defined as follows:

tp

Sens. = 30
ens i+’ (30)
tn
Spec. = ———— 31
e = +1p’ (D
1+ tpr — fj

AUC = y’ (32)
G-mean = +/Sens. x Spec., 33)

2 . X Prec.
F-measure — M, (34)

Sens. + Prec.

where tp, fp, tn, and fn denote the true positive, false positive,
true negative, and false negative samples, respectively. tpr, {pr,
and Prec. denote the true positive rate, false positive rate, and
precision calculated as:

tp
tp+ fp

fp
fp+tn

tpr = fpr = and Prec. =

b

tp+fn’

respectively. To carry out the experiments, we have consid-
ered the synthetic KEEL datasets and several real-world KEEL
and UCI [33] datasets. For the application of the proposed
CGFTSVM-ID, we employed it on the publicly available AD
neuroimaging initiative (ADNI) dataset for the classification
of AD.

B. Synthetic Datasets

To analyze the performance of the proposed CGFTSVM-ID
with the baseline models, we employed experiments on the syn-
thetic datasets publicly available on the imbalance KEEL dataset
repository. The details of the used synthetic datasets are given in
Table SI of the supplementary file. The performance of the mod-
els on the binary class synthetic datasets is depicted in Table SII
of the supplementary file. The proposed CGFTSVM-ID exhibits
the highest AUC values for datasets O4clover5z-600-5-0-BI,
04clover5z-600-5-30-BI, 04clover5z-600-5-60-BI, O4clover5z-
800-7-0-BI, and 04clover5z-800-7-50-BI. While baseline mod-
els outperform the proposed CGFTSVM-ID in the remaining
datasets, the average AUC of the proposed CGFTSVM-ID is
0.8289 with an average rank of 1.7, which is superior to those
of the baseline models. This clearly establishes the superiority
of CGFTSVM-ID over the baseline models. Table SIII of the
supplementary file comprises the optimal parameters of the mod-
els corresponding to the maximum AUC across each synthetic
dataset. For better visualization, we have compared the AUC
values using bar graph, which is depicted in Figure S1 of the
supplementary file.
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TABLE I
AVERAGE AUC, AVERAGE RANK, AVERAGE G-MEAN, AVERAGE F-MEASURE, AVERAGE SENSITIVITY, AVERAGE SPECIFICITY, AND AVERAGE TRAINING TIME OF
THE PROPOSED CGFTSVM-ID AND BASELINE MODELS ON KEEL AND UCI DATASETS

Dataset metric TSVM [7] | IFTWSVM [15] | IFTWSVM-ID [22]

pin-IFTWSVM [31]

IIFTWSVM [21] | ACFSVM [18] | ACFTSVM [29] | proposed CGFTSVM-ID

KEEL Average AUC
Average Rank
Avergae G-mean
Average F-measure

Average Sens.

0.7754
4.56
0.7347
0.5859
0.6605
0.8904
0.1198

0.7769
42
0.7593
0.5763
0.6869
0.8724
0.1484

0.7641
4.82
0.732
0.5483
0.6627
0.8671
0.1514

Average Spec.
Average time (seconds)
UcCI Average AUC

Average Rank

Avergae G-mean
Average F-measure

Average Sens.

Average Spec.
Average time (seconds)

0.7892
4.06
0.7805
0.7558
0.7873
0.791
0.02

0.7889
4.11
0.7783
0.7573
0.8084
0.7693
0.0266

0.7849
4.67
0.7766
0.7537
0.7918
0.7781
0.0252

0.7728
4.44
0.7601
0.5732
0.6893
0.8675
0.1749

0.7022
6.77
0.613
0.4583
0.6479
0.7672
0.5667

0.7694
4.88
0.7318
0.5686
0.7215
0.8245
1.0902

0.7914
4.24
0.7406
0.5773
0.6731
0.9111
0.7462

0.8344
2.09
0.831
0.6357
0.7999
0.8766
0.1247

0.8098
2.03
0.8048
0.7768
0.8153
0.8043
0.0227

0.7764
4.72
0.7675
0.7422
0.7734
0.7794
0.1352

0.7186
6.83
0.6931
0.6693
0.6886
0.7487
0.032

0.762
6.03
0.7471
0.733
0.7803
0.7436
0.1752

0.7998
3.56
0.7921
0.762
0.814
0.7857
0.1255

The bold values represent the best values.

C. Real-World Datasets

To further examine the performance of the proposed
CGFTSVM-ID in comparison to the state-of-the-art meth-
ods TSVM [7], IFTWSVM [15], IFTWSVM-ID [22], pin-
IFTWSVM [31], OFTWSVM [21], ACFSVM [18], and
ACFTSVM [29], we performed experiments on 51 real-world
KEEL and UCI datasets. The details of the datasets are men-
tioned in Table SIV of the supplementary file. First, we will
discuss the results of the KEEL datasets, followed by the results
over UCI datasets.

The detailed performance of 33 real-world KEEL datasets
(with an imbalance ratio in the range of 1-85.88) in
terms of AUC, training time (in seconds), sensitivity, and
specificity are depicted in Table SV of the supplementary
file. For the datasets, namely, crossplanel50, ecoli0267vs35,
ecoli0347vs56, ecoli067vs35, aus, checkerboard, monk2,
monk3, sonar, vowel, wpbc, yeast2vs8, abalone-17vs78910,
abalone-20vs8910, kr-vs-k-zero_vs_eight, shuttle-2vs5,
winequality-red-8vs67, winequality-red-8vs6, winequality-
white-39vs5, and winequality-white-3vs7, the proposed
CGFTSVM-ID has the highest AUC value. Other datasets
have a greater AUC for baseline models, nevertheless, the
average AUC of the proposed CGFTSVM-ID is 0.8344, which
is greater than that of baseline models. ACFTSVM has the
second greater value, which is 0.7914. The average AUC of the
remaining models is as follows: 0.7769, 0.7754, 0.7728, 0.7694,
0.7641, and 0.7022 for IFTWSVM, TSVM, pin-IFTWSVM,
ACFSVM, IFTWSVM-ID, and IIFTWSVM, respectively.
Hence, CGFTSVM-ID has better classification performance
over KEEL datasets than baseline models. However, the average
AUC value is not reliable enough to depict the superiority of a
model, as the lower AUC value of a dataset may be compensated
by the high AUC value of another dataset. To overcome this,
we assigned ranks to all the models over each dataset and
calculated the average ranks of the models. The assignment
of rank is done via: the best-performing model is assigned the
lowest rank and the worst-performing model is assigned the
highest rank over each dataset. The proposed CGFTSVM-ID
has the lowest average rank of 2.09, followed by IFTWSVM
with an average rank of 4.2. The ranks of the other baseline
models are the following: 4.24, 4.44, 4.56, 4.82, 4.88, and

6.77 for the models ACFTSVM, pin-IFTWSVM, TSVM,
IFTWSVM-ID, ACFSVM, and ITIFTWSVM, respectively. The
average metric values across the KEEL datasets of the proposed
CGFTSVM-ID and baseline models are presented in Table I.
A comparison of the count of wins, ties, and losses for the
proposed CGFTSVM-ID wrt the baseline models over KEEL
datasets is shown in the first row of Table II, which is always
greater for the proposed CGFTSVM-ID. Thus, the average rank
and win, tie, loss statistics show the superiority of the proposed
CGFTSVM-ID over the baseline models. Table SVI of the
supplementary file denotes the G-mean and F-measure values
of the proposed CGFTSVM-ID and baseline models over KEEL
datasets. Table SVII of the supplementary file showcases the
optimal parameters corresponding to the maximum AUC value.
Section 2B of the supplementary material explains the effect on
the AUC values of randomly selected KEEL data on varying
different parameters. Figure S2 pictorially illustrates the effect
of parameters on AUC values.

The performances on 18 UCI datasets are shown in Table
SVIII of the supplementary file and Table I depicts the average
AUC and rank over the 18 datasets. The average AUC values
of the baseline models over UCI datasets are 0.7998, 0.7892,
0.7889, 0.7849, 0.7764, 0.762, 0.7186, for ACFTSVM, TSVM,
IFTWSVM, IFTWSVM-ID, pin-IFTWSVM, ACFSVM, and
IIFTWSVM, respectively, whereas the proposed CGFTSVM-ID
has an average AUC value of 0.8098. Hence, CGFTSVM-ID
has better classification performance over UCI datasets than
baseline models. The mean rank of the proposed CGFTSVM-ID
i 2.03, which is the least, followed by ACFTSVM with a value of
3.56. The average rank of TSVM, IFTWSVM, IFTWSVM-ID,
pin-IFTWSVM, IIFTWSVM, and ACFSVM are 4.06, 4.11,
4.67,4.72,6.83, and 6.03, respectively. Table SIX of the supple-
mentary file consists of the optimal parameters corresponding
to maximum AUC values over UCI datasets. Figure S3 of
the supplementary file depicts the pictorial comparison of the
sensitivity metric of the baseline models with the proposed
CGFTSVM-ID on UCI datasets. Through the lastrow of Table II,
we demonstrate the count of wins, ties, and loses of the proposed
CGFTSVM-ID wrt the baseline models over UCI datasets.

In order to experimentally verify the limitation of membership
of ACFSVM [18] discussed in Section II-D wrt the proposed
CPGB function, we carried out numerical experiments on the
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TABLE II
PERFORMANCE EVALUATION OF THE PROPOSED CGFTSVM-ID AND BASELINE MODELS IN TERMS OF WIN-TIE-LOSS; THE NOTATION [WIN TIE LOSS] INDICATES
THE COUNT OF WINS, TIES, AND LOSSES OF THE PROPOSED CGFTSVM-ID OVER THE RESPECTIVE COLUMN MODEL

Dataset TSVM [7] IFTWSVM [15] IFTWSVM-ID [22] pin-IFTWSVM [31] HOFTWSVM [21] ACFSVM [18] ACFTSVM [29]
KEEL [26 4 3] [22 6 5] [25 4 4] [26 6 1] (310 2] [29 3 1] (26 3 4]
UCI 131 3] [16 0 2] [17 1 0] [16 1 1] [17 1 0] [16 1 1] [927]
o ~ACFSVM —proposed CGFTSVNI-ID —-cmc --monkl --monk3 --yeast2vs8 —~cmc--monk1--monk3 --yeast2vs8
! 08 0.8
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Fig. 4. (a) Training time of ACFSVM and proposed CGFTSVM-ID. (b)—(f) Effect of parameters on AUC values of the proposed CGFTSVM-ID over KEEL

datasets cmc, monks1, monks3, and Yeast2vs8.

UCT datasets with their optimal parameters for the ACFSVM
and proposed CGFTSVM-ID. The training time (in seconds)
obtained for each dataset is demonstrated in Fig. 4(a), which
clearly depicts that the proposed model is more efficient in terms
of training time than ACFSVM.

D. Statistical Analysis Over Real-World KEEL Datasets

In this section, we statistically analyze the performance of
the models over KEEL datasets by conducting the Friedman,
Nemenyi-posthoc, and Wilcoxon signed rank test [34].

The null hypothesis of the Friedman test hypothesizes that the
models are equivalent and possess identical average ranks. Fried-

o L. . 2
man statistic is calculated as: X% = 2y {Zk rE— 1(1-21)]

and has the chi-squared (x%) distribution having [ — 1 de-
grees of freedom. Here, r; represents the average rank of the
kth model, D and ! correspond to the count of datasets and
models, respectively. To refrain from the undesirably conser-
vative nature of Friedman statistic, F' statistic is calculated as:

Fp = #0-2XE which follows F-distribution with degrees of
F

freedom (I — 1,(l — 1)(D — 1)). In our case, we have (I =) 8
models executed over (D =)33 real-world KEEL datasets,

thus, X% = 62.5493 and Fr = 11.8823 with degree of free-
dom 7 and (7,224), respectively. At 5% level of significance,
F(7,924) = 2.0506, which is less than calculated F, hence
the null hypothesis is rejected and models under comparison
are not equivalent.

To further strengthen the statistical analysis, we conduct the
Nemenyi-posthoc test which includes pairwise comparison of
the models. According to this test, if the difference in mean
ranks between the two models exceeds the critical difference
(Cdiff), they are deemed to be significantly different. The Cdiff

is calculated as: Cdiff = g1/ l(é'];l), where ¢, = 3.031 for 8
classifiers [34]. The calculated value of Cdiff with o = 0.05
is 1.8278. Table III first row demonstrates the significant dif-
ference between the proposed CGFTSVM-ID wrt the baseline
models. It is clear from Table III that all the baseline models are
significantly different from the proposed CGFTSVM-ID.
Further, we also conduct the Wilcoxon-signed rank test, a pair-
wise test with the null hypothesis assumption of the equivalence
of the two models. It ranks the differences in the performances
of the two models depending on their magnitude. Let R™ and
R~ denote the sum of positive and negative ranks, respectively.
Table IV, first part, depicts the Wilcoxon signed rank tests of
the performance of the proposed and baseline algorithms over
KEEL datasets. If the p-value of an algorithm is less than 0.05,
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TABLE III
NEMENYI POSTHOC SIGNIFICANT DIFFERENCE BETWEEN THE BASELINE COLUMN MODELS AND THE PROPOSED CGFTSVM-ID
ACROSS UCI AND KEEL DATASETS

Dataset Significance TSVM [7] IFTWSVM [15] IFTWSVM-ID [22] pin-IFTWSVM [31] TIFTWSVM [21] ACFSVM [18] ACFTSVM [29]

KEEL  proposed CGFTSVM-ID Yes Yes Yes Yes Yes Yes Yes

ucCI proposed CGFTSVM-ID No No Yes Yes Yes Yes No
TABLE IV

WILCOXON-SIGNED RANK TEST OF PROPOSED CGFTSVM-ID WRT BASELINE
MODELS ON KEEL AND UCI DATASETS

Model | R™ [ R~ [ p-value [ Hypothesis
KEEL dataset
TSVM[7] 406.5 | 28.5 | < 0.00001 Rejected
IFTWSVM [15] 341 37 0.00026 Rejected
IFTWSVM-ID [22] 415 20 | < 0.00001 Rejected
pin-IFTWSVM [31] | 371 7 < 0.00001 Rejected
IIFTWSVM [21] 556 5 < 0.00001 Rejected
ACFSVM [138] 456 9 < 0.00001 Rejected
ACFTSVM [29] 400 65 0.00056 Rejected
UCT dataset
TSVM [7] 131 22 0.00988 Rejected
IFTWSVM [15] 157 14 0.00188 Rejected
IFTWSVM-ID [22] 153 0 0.0003 Rejected
pin-IFTWSVM [31] 148 5 0.00072 Rejected
IIFTWSVM [21] 153 0 0.0003 Rejected
ACFSVM [18] 146 7 0.001 Rejected
ACFTSVM [29] 84 52 0.40654 Not rejected

then the null hypothesis assumption is rejected. Thus, first part
of Table IV shows the baseline models are not equivalent to the
proposed CGFTSVM-ID.

E. Statistical Analysis Over Real-World UCI Datasets

To further demonstrate the superiority of the proposed
CGFTSVM-ID model, we perform statistical analysis on the
results over UCI datasets. On simple calculations for D = 18
and [ = 8, we get Friedman statistics x% = 45.8019 and Fip =
9.7089 with degree of freedom 7 and (7,119), respectively. At5%
level of significance F(7 119y = 2.1713 which is less than calcu-
lated F', thus, the null hypothesis assumption is rejected leading
to nonequivalence of the models. Now, we employ the pairwise
Nemenyi-posthoc test and the Wilcoxon test. The calculated
Cdiff value for a = 0.05 is 2.0874. Table III, second row, shows
all the models, except TSVM, IFTWSVM, and ACFTSVM
are significantly different from the proposed CGFTSVM-ID.
However, other statistical analysis and numerical experiments
demonstrate the superiority of the proposed CGFTSVM-ID wrt
TSVM, IFTWSVM, and ACFTSVM. Table IV, second part,
contains the results of the Wilcoxon test over UCI datasets,
which clearly demonstrate that the proposed CGFTSVM-ID and
baseline models, except ACFTSVM, are not equivalent. The
nonequivalence of ACFTSVM with the proposed CGFTSVM-
ID is shown by other tests.

Hence, through the numerical experiments and statisti-
cal analysis of real-world datasets, we conclude that the
proposed CGFTSVM-ID model is superior to the baseline
models TSVM, IFTWSVM, IFTWSVM-ID, pin-IFTWSVM,
IIFTWSVM, ACFSVM, and ACFTSVM.

F. Influence of Parameters on the Performance of the
Proposed CGFTSVM-ID

The nonlinear case of the proposed CGFTSVM-ID has four
parameters that have to be prespecified: the hyperparameters A1,
A2, the membership function parameter a, and the Gaussian ker-
nel parameter 0. To demonstrate the effect of each parameter on
the generalization performance of the proposed CGFTSVM-ID,
we carried out experiments on four randomly selected KEEL
datasets—cmc, monks1, monks3, and yeast2vs8. While carry-
ing out the investigations, we implemented grid search on the
respective parameters whose effect is to be determined and the
other parameters are fixed at their optimal values. The values of
parameters A1, A2, and o are same as given in experimental setup
and a € [0.5,0.55....,0.95, 1]. Fig. 4(b)—(f) represents the ef-
fect of parameters on AUC values, which clearly demonstrate
that the parameters significantly effect the AUC values of the
proposed CGFTSVM-ID. Thus, the generalization performance
of the proposed model is sensitive to the choice of optimal
parameters.

G. Choice of Steepness Parameter r in the Proposed CPGB
Membership Function

To determine the optimal steepness parameter (r) of the
proposed CGFTSVM-ID, we conducted numerical experi-
ments on several real-world KEEL datasets, including bupa,
crossplane150, ecoli0147vs2356, ecoli0234vsS, ecoli0267vs35,
ecoli0347vs56, ecoli067vs3S, ecoliOlvsS, and glassS. We
systematically tuned the parameter within the range of
[a,a/2,a/4,a/8]. For most datasets, the optimal value for
the steepness parameter () is found to be ‘a,” except bupa,
where the optimal value is determined as ‘a/4.” Importantly,
the variation in the steepness parameter of bupa from ‘a’ to
‘a/4’ did not lead to any significant change in the testing AUC
value. Consequently, for the sake of consistency, we conducted
all numerical experiments using a fixed value of r = a.

V. APPLICATION

In this section, we examine the application of the proposed
CGFTSVM-ID in the real world by conducting numerical ex-
periments on ADNI datasets,! which is publicly available. It
was launched in 2003 by its Principal Investigator Michael W.
Weiner to analyze different neuroimaging techniques for the di-
agnosis of AD from mild cognitive impairment (MCI). From the
ADNI database, we downloaded and processed 150 T1-weighted
images using the technique outlined in [35]. Subsequently, we
employed our proposed CGFTSVM-ID and baseline models for
the classification tasks involving AD versus MCI subjects, AD

![Online]. Available: www.adni-info.org
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TABLE V
AUC VALUE WITH TRAINING TIME, SENSITIVITY, AND SPECIFICITY OF THE MODELS ON ADNI DATASETS

Dataset (ir) TSVM [7] IFTWSVM [15] IFTWSVM-ID [22] | pin-IFTWSVM [31] IIFTWSVM [21] ACFSVM [18] ACFTSVM [] proposed CGFTSVM-ID
(samples, features) (AUC time(seconds)) | (AUC,time(seconds)) | (AUC,time(seconds)) | (AUC,time(seconds)) | (AUC,time(seconds)) | (AUC,time(seconds)) | (AUC,time(seconds)) (AUC time(seconds))
(Sens.,Spec.) (Sens.,Spec.) (Sens.,Spec.) (Sens..Spec.) (Sens.,Spec.) (Sens.,Spec.) (Sens.,Spec.) (Sens.,Spec.)
CN_vs_AD (1.22) (0.8736,0.0206) (0.8834,0.0444) (0.8834,0.0615) (0.901,0.0412) (0.8033,0.067) (0.802,0.053) (0.9128,0.0797) (0.8962,0.0244)
(415,91) (0.8431,0.9041) (0.8627,0.9041) (0.8627,0.9041) (0.8431,0.9589) (0.9216,0.6849) (0.6863,0.9178) (0.9216,0.90411) (0.902,0.8904)
CN_vs_MCI (1.75) (0.6219,0.0158) (0.673,0.029) (0.7006,0.0359) (0.6621,0.0371) (0.6461, 0.0988) (0.6939,0.0423) (0.7071,0.1037) (0.6776,0.029)
(626,91) (0.8504,0.3934) (0.7559,0.5902) (0.811,0.5902) (0.4882,0.8361) (0.4724,0.8197) (0.5354,0.8525) (0.6929,0.721311) (0.7323,0.623)
MCLvs_AD (2.13) (0.6587,0.0293) (0.6615,0.0209) (0.615,0.0264) (0.6462,0.0271) (0.6455,0.0441) (0.6182,0.0416) (0.6178,0.0849) (0.6801,0.0229)
(585,91) (0.5538,0.7636) (0.5231,0.8) (0.3846,0.8455) (0.4923,0.8) (0.4,0.8909) (0.4,0.8364) (0.5538,0.681818) (0.5692,0.7909)
Average AUC 0.7181 0.7393 0.733 0.7364 0.6983 0.7047 0.7459 0.7513
Average Rank 5.67 3.83 4.83 4 6.33 5.67 3 2.67

The bold values represent the best values.

subjects versus control normal (CN) subjects, and MCI versus
CN subjects.

A. Experimental Discussion on AD Dataset

The numerical experiments are employed on the proposed
CGFTSVM-ID and baseline models over ADNI datasets with
their performance shown in Table V. For the CN versus AD case,
ACFTSVM is the best-performing model with AUC 0.9128,
pin-IFTWSVM with AUC 0.901 is the second-best model, fol-
lowed by the proposed CGFTSVM-ID with AUC 0.8962. For
the CN versus MCI classification, the proposed model lies at
the fourth number in performance having AUC 0.6776 with
ACFTSVM, IFTWSVM-ID, and ACFSVM being at the first,
second and third number having AUC 0.7071, 0.7006, and
0.6939, respectively. The third and most important classification
of MClI versus AD case, the proposed CGFTSVM-ID is the best
performing with AUC value 0.6801 followed by baseline models
in the order IFTWSVM, TSVM, pin-IFTWSVM, [IFTWSVM,
ACFSVM, ACFTSVM, and IFTWSVM-ID with AUC values
0.6615, 0.6587, 0.6462, 0.6455, 0.6182, 0.6178, and 0.615,
respectively. The average AUC of the proposed CGFTSVM-ID
is 0.7513 and average rank for the proposed CGFTSVM-ID is
2.67, which are the best among the models. Tables SX and XTI of
the supplementary file consist of metric G-mean, F-measure, and
optimal parameters corresponding to the maximum AUC over
the ADNI dataset. For ease of visualization, the AUC values of
the models are shown in Figure S4 of the supplementary file.

VI. CONCLUSION

In this article, a novel model termed CGFTSVM-ID is pro-
posed to reduce the effect of noise/outliers and imbalanced data
simultaneously. In CGFTSVM-ID, we employed a novel CPGB
membership function according to which the majority class data
points are assigned weights by combining the gbell function,
class probability, and imbalance ratio. The gbell function ef-
fectively identified the potential outliers within the majority
class. To further mitigate the impact of class noise and ID, we
calculated the class probability of each majority class sample and
considered the imbalance ratio. To ensure the significance of the
minority class samples, they were assigned relatively high mem-
bership values. The experimental results and statistical analysis
of the proposed CGFTSVM-ID with the baseline models on clas-
sifying real-world KEEL and UCI datasets clearly demonstrated
the superior performance of the proposed model. The proposed
CGFTSVM-ID is also applied to ADNI datasets to demonstrate

its real-world applications for classifying AD subjects from CN
and MCI. The proposed CGFTSVM-ID proved to be the best
classifier for the diagnosis of MCI versus AD case, which is
challenging to classify according to the literature. Nonetheless,
it is important to highlight that the proposed CGFTSVM-ID is
specifically tailored for binary class datasets. Furthermore, its
applicability is limited when dealing with large-scale datasets
due to the computational intensity associated with matrix in-
version. Hence, there is potential for extending its functional-
ity to accommodate multiclass classification tasks. Moreover,
deep learning models had shown efficiency in feature extraction
and dimension reduction, ultimately contributing to improved
classification performance. Therefore, it could be worthwhile to
explore the extension of the proposed CGFTSVM-ID to its deep
variant.
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